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ABSTRACT

Scientific method is a process of guided learning in which accelerated
acquisition of knowledge relevant to some question under investigation is achieved
by a hierarchy of iterations in which induction and deduction are used in
alternation.

This process employs a developing model (or series of models implicit or
explicit) against which data can be viewed. Ideally at any given stage of an
investigation, such a model approximates relevant aspects of the studied system
and motivates the acquisition of further data as well as its analysis. By the
use of a prior distribution it is possible to represent some aspects of such a
model as completely known and others as more or less unknown.

* Now parsimony requires that, at any given stage, the model is no more complex
than is necessary to achieve a desirable degree of approximation and since each
investigation is unique we cannot be sure in advance that any model we postulate

• will meet this goal. Therefore, at the various points in our investigation where
data analysis is required, two types of inference are involved: model criticism
and parameter estimation. To effect the latter, conditional on the plausibility
of the model, and given the data, we can, using Bayes ’ Theorem, deduce posterior
distributions for unknown parameters and so make inferences about them. But,
before we can rely on such conditional deduction, we ought logically to check
whether the model postulated accords with the data at all and, if not, consider
how it should be modified. In practice, this question is usually investigated by
inspecting residuals, by other informal techriiczues, and sometimes by making formal
tests of goodness of fit. In any case model criticism, the inferential procedure
whereby the need for model modification is induced, is ultimately dependent on
sampling theory argument. These principles are formalized by an appropriate
analysis of Bayes’ formula , and implications for robust estimation are considered.
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~~~~~~~~~~~~~ SIGNIFICANCE AND EXPLANATION

Sampliny theory inference (e .g.  inference based on sampling dis-

tributions of statistics and in particular on significance tests) and

Bayesian inference are usually thought of as rivals and much effort has

been spent in propounding their relative merits. In this paper it is

argued that both kinds of inference are needed in the scientific itera-

tion whereby knowledge is acquired.

This iteration employs a directed alternation between induction and

deduction which uses model criticism on the one hand and parameter esti-

mation on the other. An analysis of Bayes’ formula reveals model criti-

cism as a sampling theory concept and parameter estimation as a Bayesian

concept. The implications of these ideas for robust estimation are

discussed.
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SAMPLING AND BAYES INFERENCE

IN THE ADVANCEMENT OF LEARNING

George E. P. Box

* Toda y Statistics appears to be in a somewhat confused state*. The controversy

about Bayesian inference and Sampling Theory inference which some believe involves a

critical choice is not resolved to most people s satisfaction. Furthermore concepts

such as Data Analysis and Robust Estimation are receiving such new emphasis that some

advocates of the “ new Statistics” are even claiming that all else is useless and old

hat.

To some extent the new and adciirable emphasis on “looking at the data ” is a

reaction to previous extremes. On the one hand overemphasis on theory for its own

sake (mathematistry) and on the other a knee—jerk approach to statistical analysis

(cookbooJcery)t. Neither of these aberrations was healthy and some adjustment was long

• overdue. However I think the mistake continues to be made of assuming that different

approaches to statistics are necessarily in an adversary position. I will develop the

• contrary view and try to show how I believe the pieces f it together .

I start from the idea that Statistics is or should be the art and science of

building scientific models which (necessarily) involve probability. Consider then h o :

such stochastic model building should be done.

*What is happening is related to the revolutionary change in computational speed. We
need to be deterred less and less by the number of steps required in a calculation
although we must correspondingly increase our concern that the human mind is also
adequately involved in directing the tactics and strategy of investigation.

tSee discussion of “mathematistry” and “cookbookery” in Science and Statistics,
(Box 1976).

Sponsored by the United .~ :ates Army under Contract No. DAAG29-75-C-0024.



1. The advancement of learning as an i teration between theory and practice

Although the matter was over the centuries debated it seems long ago to have been agreed

that scient if ic  knowledge is efficiently advanced , not by mere theoretical speculation on the

one hand , nor by the mere accumulation of empirical facts on the other , but by a motivated

iteration between these two activities. In this practice—theory interation a tentative theory

or model suggests a particular examination and analysis of data already existing or to be

acqu ired*. The results of this examination will then frequently suggest a modified model

requiring further practical illumination and so on. The advancement of knowledge thus occurs

as the result of an interplay between dual processes of induction and deduction which carry

forward an iteration in which the model is not fixed but is continually changing. The stat-

istician’s role is to assist this process. In doing so he uses two inferential devices that

I will call Criticismtand Estimation. The first can induce model modification , the second

leads to estimation of unknown parameters assuming the truth of the model. For illustration,

in Figure 1 at sane stage of an investigation, model M. is currently being entertained.

Criticism involves a confrontation of M
t 

with available data y and asks whether M
i

is consonant with y and , if not, how not. It is a process of diagnostic checking. It

may be done informally using plotting techniques of various kinds often involving residual

quantities and more formally, with tests of goodness of fit. It may suggest that model

modification to M
~+i is needed. In sane instances it will be judged appropriate to now

confront M .+l with the same data , in others the nature of the modified model or necessity

for independent verification may indicate the need for new data generated by a new design

This will be chosen to explore shadowy regions whose illumination is currently

believed to be important to progress.

Estimation. If the process outlined above leads to a verifiable model, that is one

which when put to the test appears to provide an adequate approximation to reality, it may

logically be used to estimate parameters conditional on its truth. However in practice this

*1 shall suppose that data is acquired fran a designed experiment but the same argument would
apply if data acquisition was f rain a sample survey or even from a visit to the library.
tme apt naming of model criticism is due to Cuthbert Daniel.

—2— 
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estimation process will be used not only at the termination of the model building sequence

but at every stage throughout it. This is because in order to conduct criticism of the model

it is often necessary to provisionally estimate parameters at intermediate stages, tentatively

entertaining the model as if it were believed true.

I shall argue in this paper that while criticism must ultimately appeal to sampling

theory for its justification estimation requires the use of Bayes theorem (or, for the faint-

hearted, likelihood). Acceptance of this position provides justification for a specific

kind of sampling theory significance tests but none for sampling theory confidence intervals.
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2. Rival theories of inference

The distinction between inferential criticism and parameter estimation has often not

been made and proponents both of sampling inference and Bayesian inference* have long sought ,

m istakenly in my view, for a single comprehensive theory. By sampling theory inference I mean

inference made by referring some relevant function of the data to a reference sampling dis-

tribution which would be appropriate if sane specific hypothetical model N
0 

were true.

By Bayesian inference I mean inference made by calculation of a posterior distribution

obtained by the combination of a prior distribution with the likelihood .

Now it is not surprising that a scientific discipline should have rival theories. This

is a camnon phenomenon and the resolution of such rivalries is the stuff of scientific pro-

gress. But in other subjects controversies are resolved within a decent interval of time.

What surely is odd, is that, rival theories in Statistics which have been available f or more

than 200 years should still be in contention.

• What I believe is that both sampling and Bayes theory have important roles in the

scientific iteration, but these roles are different. Sampling theory is needed for criticism

• of an entertained model in the light of current data while Bayes theory is needed for mak ing

inferences about parameters conditional on the adequacy of the entertained model. On this

view (see also Box andTiao; 1973) both processes would have essential roles in the continuing

scientific iteration just as the two sexes are required for human reproduction. It is easy

to see that any attempt to choose between two entities which are not alternative but comple-

mentary could certain3y be expected to lead to contention, paradox, and confusion of the kind

we have been experiencing . The view that more than one mode of statistical reasoning can be

useful is not, of course, new and in particular was advanced (however with a different

emphasis and conclusions) by R. A. Fisher .

*There are other minor contenders but taking a broad view these can be regarded as schisms
fran the two major philosophies. Thus Savage’s description of fiducial theory as “a
valiant attempt at making the Bayesi-~n omelette without breaking the Bayesian eggs” seems
justified. Certainly fiducial inference and likelihood inference are concerned with the
Bayesian objective of making sane direct statement as to the plausibility of different
values of a parameter. Also many supporters of sampling theory would not necessarily go
along, for example, with all  of N~yman—Pearson theory.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~.__.
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3. Sane remarks on Sampling and Bayes inference

The essence of what I mean by “ sampling theory inference” is exemplified by the Shewhart

quality control chart. The set of limit lines for the sample mean for example indicates

for this function of the data , a reference distribution appropriate for the model M0 
(fo r

the process in control). A single outlying point is surprising because it is associated with

unusually low probability density. It thus raises the possibility that M0 is inappropriate and

that an alternative model H
1 

might be needed to explain the inadequacy. In the words of

Shewhart, the process is out of control in a manner which we may be able to attribute to

an assignable cause. A number of different functions of the data nay be considered in

checking the appropriateness of M
0 

and their nature depends on the type of departures from

that are in mind. Thus quality control charts are often kept of both the sample mean

and the sample range to indicate departures from M
0 

in both level and spread and other

functions such as run length of positive deviations might also be considered. Finally

patterns which were not foreseen may possibly turn up, invite consideration, and induce

possible explanations to be subsequently tested .

Prior probabilities in Bayesian and Sampling inference

In the past the need for prior probabilities has often not been thought of as a

necessity for all scientific inference but rather as a feature peculiar to Bayesian inference .

Indeed it is of ten regarded by non—Bayesians as the major point of weakness of Bayes theory

and has , therefore , been a focus for attack and sometimes for derision . By contrast a

Bayesian proponent might argue (a) that any theory of estimation worthy of the name should

make it possible , given a model , to say after data had come to hand what was believed

about the values of its parameters and (b) that what was believed after the data was

available must surely depend on what was believed before it was available (c) that this

would include the possibility of sometimes using non—informative prior distributions either

to simulate the actual state of relative ignorance of the investigator or to represent the

impact of the data on a hypothetical unbiased observer (or juror ) . He might argue further

that the diff iculties and paradoxes that have embarrassed advocates of sampling theory as it
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has been practicsd and their inability to f ix  up the theory convincingly have cane from

its ~-sst inath~quate capability to include prior information .

Sampling theory is of course not free fran assumptions of prior knowledge. Instead it

is as if only two states of mind have been allowed——complete certainty or complete uncer-

tainty. Whereas in the sampling theory context a parameter had to be treated either as

exactly known or as completely unknown , in the Bayesian context a prior could be chosen to

approach either of these extremes or any intermediate state .

In this connection it is important to remember that every simple model can be thought

of as embedded in a more complex one. For example an outright assumption of normality can

be modelled by a suitable parametric family of distributions indexed by a parameter 8,

which has a sharp prior at the normal value. Independence of errors , so frequently assumed ,

can similarly be represented by a sharp prior operating on a broader model allowing appro-

priate dependence. Seen in this way, it appears that, when assumptions of normality and

independence are made in sampling theory, it is not that no prior knowledge is used, but

rather that implausibly precise prior knowledge is implied.

—7—
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4 . The model is the prior

Such considerations lead me to believe that it is impossible to logically distinguish

between the model and the prior d is t r ibu t ion. In a real sense the model is the p r i o r .  A

model is a probability statement of all the assumptions currently to be tentatively enter-

tained a priori. These probability statements can express certainty or various degrees of

uncertainty.

Of course models are approximations (good ones are a r t f u l l y  chosen approximations which

work well in practice) . But there is good reason to believe that  the “a l l  or none ” prior

assumptions implied in the traditional use of a sampling theory are frequent ly  too crud e

even as an approximation. Indeed many of the difficulties of sampling theory which have

come to light in recent years may be traced to the primitive means it has available for

incorporating prior knowledge and the crippling effect of allowing only probability state-

ment of a certain kind to be included in the model. One illustration of how implied prior

knowledge which is implausibly imprecise can lead to trouble in sampling theory in the

famous discovery by Stein (1956) of the inadmissibility of normal mult ivar ia te  mean, and

the improved nonlinear shrinkage extiinators which give smaller mean square error.

It is however easy to miss the lesson which is to be learned from such examples . To

• pecif .c, consider the usual one—way analysis of variance set—up. Here a locally uniform

prior distribution for the set of group means ~~‘ (ii~~~ i
2
. . . . . . . . , ~~) which

would exactly justify the sample averages as estimators makes little sense (see, for example ,

Box and Tiao (1968), Lindley and Smith (1972)). By .~ontrast the prior essumption which

justifies the shrinkage estimator is that the Ii , are random samples from some normal super

population having unknown mean and variance. ~ ,is corresponds to the usual “model IT
S’

sampling theory assumption and in appropriate circumstances could be eminently reasonable.

it is crucial to notice, however , that there are many circumstances in which this latter

assumption would not be sensible either.because, although prior knowledge about

~
, existed , it was of quite a different character . For example, if the ~‘s wer e

daily batch yields from some production process, i t  would u s u a l l y  be much more sensible to

—8—
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postulat.t> that t.ht>y foll owed fiOIIt time serie!' w..Kic l sur h as a sta t iono1r y aut CJn.·gr ,..ss ivo.; 

process (Tiao and "li (1971)). The estW.tors then de riveq fr•JIII B . .y•:s i"" m P • .ns <.a r •· J:OT 

Stein's shrinkaqe e!lti .. tors, which would appropr iate ly iut cotiuct> sam:. l c: 111formation about 

2 
ou, but alternative esti•ators allowing incoq,ora tion o f re l evant s amp l e infocm<ation about 

the autocorrelation of the batch ~ans. 

sa.e sa.pling theorists concede that Bayes theorem may be used as a k ind of conjuring 

trick to produce efficient esti•ators which are then used in a sampling ~heory context . In 

t:tis excercise they regard the prior distribution as a convenient prop whir h i s neve r taken 

seriously and is quickly discarded. I think the example quoted above is one of many which 

shows t n.t this idea has no rational status. For it illustrates that there is not one set 

of "shrinkage estt.ators~but an infinity of such sets depending (very naturally) on the 

aodel (that is the prior) which is appropriate to describe the particular scientific situa-

tion under study. 

The strength ~f the e~licit stata.ent of prior assumptions is that in the iterative 

aodel building pr,ocess, they .. ke .. nifest at every stage exac tly what assumptions are 

tentatively entertained and so allw thell to be criticized. Soae of the nervousness 

e.pertenced ~ noa-Bayesians conf~ted with the idea of a prior distribution has perhaps 

arisen because the iterative nature of scientific process and consequent tentati ve tran-

sitory character of aadels and all their assumptions, has not been generally understood. 

"-nY of us were taught to think unrealistically in terms of "on~ shot" procedures. 

The sequence: fr~ hypothesis - collect data - test hypothesis/make decision; of 

course, fails to describe the usual context in which s tatistics is applied. 

Critics have therefore feared gross •istakea arising fr0111 ada~~ar.tine prior prejud i ce 

which ignored "what the data were tryi ng to say . " In the itcratiVP context of real sc i enti-

fie enquiry however gross mistakes about the prior or any other aspec t of the model will 

usually be corrected at the criticism phase of the next iteration. 

-9-



If w,• .:~ , ·rc>t' t · thC' prior j. robability distribution of p.'lra.ete . s ~ as an essential part 

of a mod~t then all aspects of the .adeLhypothesized at so.e particular staqe of an investi-

gatio~are contained in the joint density obtained by ca.bininq the likelihood and the prior 

PI'!,I\IM) . p(y!II,M) 0 p(9IM) ... ... ... ... (5.1) 

where IM is understood to indieate conditionality on so.e aspect of the IIOdel and ~ is a 

do1ta vector. 

This joint distribution which is a co.prehensive stat ... nt of the IIOdel can also be 

factored as 

(5.2) 

and can be CQIIPUted before any data be-;..-e available. In particular the second factor on 

the riqht (5. 3) 

which is the predictive distribution, .. y be so calculated. It is the distribution of the 

totality of all possible 8411fles that could occur if the .adel II were true. 

When an actual da&..a vector ~ ~s available 

The first factor on the riqht is then Bayes' posterior distribution of ~ qiven !d 

and the second factor 

is the pr~ictive density associated with the data set ~ actually obtained. Fiqure 2 

illuatrates for a single para.eter e and a s.-ple ~ of n • 2 observations. 

If the IIOdel is to be believe~ then the posterior distribution p(~lyd,M) allows all 

relevant estillation inferences to be made about e. However even if the IIOdel were totally 

incorrect, this could not be shown by any abnormality in this factor which is conditional on 

~data and IIOdel specification. However plausibility or otherwise of obtaininq such a 

aa.ple if the IIOdel were appropriate may be assessed by reference of t.he density p(ldiM) to 

-10-
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posterior
p (y , O I M ) p ( O~ y ,M)-d

o(8~M)) likelihood - 
- - 

~~~~~~~~~~~~~~~~~~

(

>/

~~~~~~~~~ /

\
\ — 

pred,.cti.ve density

Figure 2. Showing for a single parameter 9 and sample ?d of

two observations; the prior distribution, likelihood contours, the

posterior distribution and contours of the predictive distribution.
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the predictive reference distribution p ( y t M ) . An unusually small value of r~
(/d 1-1) as

measured by Pr {p(y~M) < p (y
11~

M ) )  casts doubt on the appropriateness of the model M. Now

p(y~t4) is an n-dimensional distribution and it will usually be true that if the model is

inadequate it is most likely to be deficient in certain directions associated with unusua l

values of certain specific functions g~~(y) of the data. Examples of such functions are

sample averages, variances, moment coefficients, coefficientsof serial correlation, and other

measures of standardized deviations from a norm. In every case the appropriate reference

distribution to which the realized statistic g . ( y ~ ) should be referred is the distribution

when the model M is true , derived by appropriate integration o’ p ( y I t l ) .

- In practice, criticism or diagnostic checking of the model is often conducted by visual

inspection of residual displays and other more sophisticated plots. But such a process ,

although it is informal, still, it seems to me, falls within the logical framework described

above. The statistician is looking for “ features” in the data which would be surprising or

“unusual” if the model M were true. Such a feature can be described by a function g (y ~ )

and its unusualness, if formalized, would have to be measured by reference to p(g(y) M}.

In addition to possible discrepancies to which we have been alerted by experience.

other features may appear pointing to inadequacies of a kind not previously suspected . This

possibility has sometimes proved perplexing fo~ statisticians, for while on the one hand the

truly unexpected could point the way to precious new knowledge, on the other, associated

probabilities will be indeterminate because of the uncountable character of other features

that might also have been regarded as surprising. I think the calculation which igmores

this difficulty of indeterminate selection should still be made , for while it might lead to

the too frequent pursuit of nonexistent assignable causes, the iterative process will

quickly terminate this chase and carrying out the exercise will at least eliminate phenomena .

which at first sight look surprising but really are not. For example, Feller (1968) shows

that for a random group of 30 people, the probability that at least two have coimcidemt

birthdays is over 70%, this tells us we need look no further for an explanation when we are

surprised to find two such people at a party.
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Example: Unk nown mean 0, variance o~ assumed known.

Consider a sample of n observations drawn randomly from a normal distribution

with unknown mean 0 and known variance 0~~. We express uncertainty about the mean

by supposing that a priori 0 is distributed normally about 8~ with variance

Thus
n 2— —  I (y .  — 0)

p(yjO,14) = (2w ) 2o
_n

ex~{_ i ‘

~~ 
} ( 5 .7 )

p( O I M )  = (21!) 2a_ l { 1 
_ e

o
) 2

} 
(5.8)

The posterior distribution f rom which 0 may be estimated conditional on the adequacy

of the model is then

- 
~ 

:°
~
:‘: 

= (2 1!) (_~~ + j) exp{_ -~~[.4 +j j (9 - ~ ) 2} (5.9)

where e = (—i + —i) (_
~ 

eo + —~ y)
0

0 
0~~ O

e 
0

0

The predictive distribution which can act as reference distribution for the observed

data vector 
~~~~ 

thus allowing criticism of the model, is

p (y~M) = (2 w) 2 o~~~~~
1
~ n

2
(o~ + ~ ) 2exp{_~~~{(fl _ l ) s2 

+ 
~~ 
: 
~~ 

(5.10)

And the probability

P = P r { p ( y I M )  < Pr {X~ > C) - -

where
— 2

— 
(n — l)s2 + 

~~‘ 
—

2 2 20
0 00 + 00/n

supplies an overall portmanteau check on model fit.

cbvious sample functions for checking individual features of the model are

and suitably chosen functions of standardized residuals r = (r
1
,...,r )’ with

r . = (y .  — y)/s i = l,...,n. The choice of these residual functions

will depend on the context. They will include the standardized residuals r

—13— 
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- themselves, but might also address the need to apply checks for “had Va l hic S ” , eke wness ,

kurtosis and serial correlation , for example. The standardized residuals in the form

defined above are constrained by the identities Zr . = 0, Zr~ = n - 1 and can be more

conveniently parameterized in terms of n — 2 independently distributed functions

obtained as follows:

Make an orthogonal transformation from y to Y = (Y
11
Y
2
,. ..Y )’ with Y =

and then transform to y ,s2 and u where U is a vector of n — 2 residual

quantities U (u
1
,u
2
,. 

~
•
~
U
n 2

) such that

- 
U. = ~+1/{~~ Y~~/j }

2 .

The Jacobian of the transformation from y to ~,52 ,u is proportional to

~~~- — l  n—2 
2(~ 2 ) fl {~ ~• u ./j } 2 After transformation there fore the predictive distri—

j=l

bution contains n elements all of which are distributed independently and becomes

p( y , s2 , uI M) = p(y M ) p ( s 2j M ) p ( u ~ M) (5.11)

- where
-~~~

p ( YI M)  = (21r ) 2 (0
2 + 0~ /n) 2exp—- ~~(~ — e0) 2/ (o~ + o~ /n) } (5.12)

— 
p(s 2

IM)  = { i }
~ (r_l)

l{i }2
_4 (n_l)

2 Y_l~~~~~~i 2 2 }

(5.13)
1 (n—l ) 2 1— — — n—2 u . — — ( j +1)

l)(~h I M )  = r 2( n — l ) ( w )  2 
F{~~.( n _ l) } 

j~ l 
{l +_ ~ .} 

2 (5.14)

The standardized residual quantities of interest g
1
,g
2
,. 

~~~~~~~ 
can then be expressed

equally as functions f
1
(u),f

2
(u),. . .,f~ (u) of the u’s. So that, in particular,

unusua l features of ~~~~ and g
1
1. . 

~
‘9k 

given the model could be assessed by

computing

Ci ) Pr{p (~ IM) <

(ii)  Pr {p(s2 j M )  < P(~~IM )
}

(iii) Pr {p(g j M )  e p(g~~~M)} j = 1,2,. .., k .
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These are the ( two tail area) probabilities associated with reference of

~~~ 
- 

~~~~~ 
+ a~/n)

2 
to the Normal table

(ii) (n - l)s~/a~ to the table

(i2~~~) 9~~~ 
to the reference distribution obtained by appropriate integration

of the distribution p(u~M).

They yield checks on the adequacy of the model which we denote by c(~ ) , c(s 2 ) ,c ( g .) .

For example suppose the yield of a batch process was under study and that a

sample y was available of n observations all from a single batch having unknown

mean 9. Suppose at this stage of the investigation that the tentative model assumed

that, because of process variation, batch means varied Normally and independently about

some value with variance and, because of testing variation, the ith observation

y~ varied about 8 normally and independently with variance 0~~. Then the model would

be that discussed above and, if this model could be believed, the batch mean 0 would be

estimated by the posterior distribution N {O , (I~ + I.. ) 1} where I— no0
2 , I

$ o;
2.

~~d, if we write w L./(I
9 

+ I~.) for the proportion of the information coining from

the sample, then 0 wy + (1 — w)8
0
.

Before drawing such a conclusion however a prudent statistician would question the

- model. In particular applying the checks

(i)  an unusually small value of p(~~ N ) could call into question the

choice of some or all of 
~~~~~ and

(ii) an unusually small value of p(s2lM) could call into question the

2
choice of o~.

(iii) an unusually small value of p(g~ IN )  could suggest departures from

the assumed distributional form p(y~8,M) produced by serial

correlation, bad data values, non-normality, etc.

Only after the investigator had found that the evidence offered by the data did not

invalidate the model should he proceed to make the conditional deductive inference

supplied by Bayes theorem.

—15— 
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6. Some implications

Consider the problem of making inferences about 0 is t b -  rvvirsi s

example. If we assume the model true then we can estimate 8 from a normal posterior

distribution with mean e wy + (1 — w)00 and variance (I~ + I...) l where

w — I~/(I~ - I—) is the fraction of the information coming from the sample. First

however we require to check the model using the predictive distribution. In particular
1

the check c(y) requires a reference of 
~~ 

- °o >
~~°e~ 

+ 0~/n)~ to the normal table.

Significance test. Suppose o~ is assumed small compared with 0~/n, then w, the

relative amount of information, supplied by the data is small and 1 - w is close to

unity. Then, if this model can be relied upon, the posterior distribution is essentially

the same as the prior and is sharply centered at 80
. (A practical context is one where

the statistician is told that process variation is negligible compared with testing

variation and the process mean is known to be 
~0

•
~ 

If this model is assumed, then

information from available data y can add very little to what is known already.

However, it can deny the relevance of this model. In particular c (y) involves the

reference of (~ — 0
0
)/(o

0/v
’~) to normal tables; the failure of this check means

that the model is discredited and therefore the operation that leads to a sharp

posterior distribution centered at 0
0 may not logically be undertaken.

The above most satisfactorily explains to me the rationale of a significance test.

Ci) The tentative model (null hypothesis) implies that e = 0~.

(ii) A chec . on this aspect of the model is provided by reference of

(y -- to the Normal Table.

(iii) If the tail area probability is not sznaU we do not question the

model. The application of Bayes theorem then produces a posterior

distribution which is a delta function at 00. we have “no reason

to question the null hypothesis”.

(iv) If the tail area probability is small we conclude that the model

which postulates that 0 = 00 
is discredited by the data and that

some other model is appropriate. The “null hypothesis is rejected.”

-16—
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(vi Notice too that although the failure of this check would most

immediately proscribe the use of Bayes theorem, the fa i lure  of

other checks (and of c(s2, in particular) would also indicate

the necessity of model modification before proceeding further.

A difficulty that this removes for me is that, as usually formulated, significance

tests seem to provide no basis for belief. On the above argument, if we accept the

model, we believe a priori that 0 is close to 9~. We must therefore believe that

o = 00 
very nearly a posteriori. The availability of data provides however an oppor-

tunity to assess the concordance of data and model.

The significance test itself provides a means only of discrediting the model.

Our belief in the proposition ~ = comes from an application of Bayes theorem for

a model which there is no reason to question (as a reasonable approximation to truth).

In particular this underscores the illogicality of testing a null hypothesis

which is not credible to begin with. Thus the Durbin—Watson test for serial correla-

tion, for which the null hypothesis is that errors are distributed independently, is

frequently misapplied to test serial data which a priori can be expected to be

autocorrelated.

Precise measurement and improper priors

Suppose now that was very large compared with 0~/n. The predictive check

c(y) now approaches 
~~ 

— e
~
)/ae implying that for sets of data having widely

different sample averages the model would not be called into question. The situation

where such a non-informative prior distribution was relevant was referred to by L. J.

Savage as that where the theory of precise measurement applied. The invocation of

this principle might, at tirst, seem a license to use Bayes theorem without any restrain-

ing checks of the model. But this idea makes no sense either from an applied or a

theoretical point of view.

The practical situation is that the sample information coming from y must be

evaluated in a context where there is relatively very little prior information about

the value of 0.

—17—
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Here computational convenience and logic must of course be carefully distinguished .

Replacing “relatively very little” by zero can be justified computationally in those

circumstances where to do so provides a good numerical approximation but not otherwise.

However in either case zero remains infinitely smaller than any small quantity. In

this example, substitution of an improper uniform prior will produce a normal posterior

distribution having mean ~ and variance 0~~/n , also obtained as the limit whei~ in our

model, the fraction of information w supplied by the data tends to unity. But not only

that , the specification of the prior for 9 as N(0
0
,o2) is obviously overly specific, 

- 
-

and the improper prior could provide an appropriate limit for disperse priors which were

widely different in structure and/or much less specific.

All statistical results, in so far as they relate to reality, are approximations.

Those obtained from improper priors do in many important examples provide excellent

approximations. I hasten to add of course that limiting processes can be tricky and

-r theoretical statisticians are right to worry about them.

Notice however that the situation is different for the predictive check. To say

• that w is close to unity is only to say that will dominate the denominator in

(~ — O~~)/(0~~ + , But to say that it is equal to unity implies that o~ is

infinite and the check cannot be made, which implies that there are absolutely no values

of y which could discredit the model - a situation which I cannot imagine as

practically possible.

Consider for example, a physical chemist who runs experiments to determine the

activation energy 0 for a particular chemical reaction about which little is known.

It would usually be true that his initial uncertainty about 0 would be large

compared with the anticipated standard deviation a/,,ç,~ of the experimental procedure ,

the theory of precise measurement would apply therefore and the limiting result

obtained from the usual improper prior would supply a good approximation. Nevertheless

the chemist may know that activation energies for compounds of the kind being tested are

usually measured in tens of kilo calories per gram mole. If the statistician,

who has perhaps misplaced a decimal point, presents him with an estimate of

—18—
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s~w ~.l ilo jlorit’s ~-r yram mob he will rightly reject it. In doing so he will be

informally conducting a check iormalized by c(~ ). In practice the; checks such as

c(y) can never really be dispensed with. The non-informative prior used in practice

must to make practical sense always be’ proper, but nevertheless the appropriate

posterior distribution can, in suitable circumstances, be numerically approximated by —

the device of substituting an improper prior. I labour this point because

although it has been made earlier (see for example Box and Tiao 1973, p. 28) critics

seem to have misunderstood earlier discussions. Explicit consideration of predictive

checks makes the situation even clearer.

choosing the diagnostic checks

Frequently the checking functions g(y) which are to be used formally or inform—

ally for checking various features of a model N are chosen on an ad hoc basis.

One formal basis for selection of such functions follows essentially the route

explored by Neyman and Pearson. Suppose a basic model N0 is given and an alternative

model M1 
represents some discrepancy from M0 

which is of interest. Then a function

of the data suitable for detecting such discrepancies may be obtained from the tatiot

p d IM o)Ip(?d IM l
)

Parsimony: Diagnostic checks versus Robustification

A question which confronts* the statistician at every stage of an investigation is

“How complex a model should I use?” The possibilities for model elaboration are of

course limitless. For instance a commonly used model assumes errors to be Independently,

Identically and Normally distributed (IIN). It is easy to imagine a sequence of fall—

beck models which might begin like this

M0~~~
M1~~~M2

-~ M3 -’ ....

tIN L.$ jI$ ~U$

~Model criticism cannot logically be conducted by the study of the magnitude of such
ratios however, for even if this ratio were very high the predictive check could
still show the favored model to be highly implausible.

An apparently different question is “should I use a robust procedure?”, but I will
argue that this is subsumed by the broader question.

— 19—
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At each stage of elaboration there are many forms the modified model could tcke and

most require additional parameter values either to be given from prior knowledge or to

be estimated from the data. Obviously compromise is necessar~ for, on the one hand.

simpler models can allow better scientific understanding and better estimation, while,

on the other hand, more complex ones can, but need not, be closer to the truth. A con-

solation is that, realistically,model building is iterative, so that mistakes can be

rectified.

This fact of necessary compromise raises the dilemma of where should the compromise

be made, that is to say, of what should be left out and what be included. In narticular

suppose some deviation from an “ideal” model N
0 

can be parametri~’ed by a .~~~ :crepancy

parameter B or a vector of such parameters.

For illustration H0 might be the usual normal ~odel and B could measure

(i) possible serial correlation of errors (e
~_1
.e
~
.e
~+i~

...); for

instance, the serial correlation might be generated by a first order

autoregressive process e~ = Be~,,1 + a
~ 

where a
t 

was a source of

discrete white noise.

(ii) possible deviation from error normality; for example* according to

p(e~c,B) const o lexp( {e2/a2}l/U4~~ I

(iii) need for parametric transformation; for example the normal I i~ear

model would be valid not for y but for Y
B.

(iv) need to allow for bad values; for example with probability B

(close to unity) the error variance was ~
2, with probability

1 — B itwas k a

— 
In each case there are two ways to handle the possible model discrepancy, depending or.

whether the parameter B is omitted fron~ or included in, the model. We call these

diagnostic checking and robustification.

Diagnostic checking. If the discrepancy parameter is omitted from the model then an

appropriate diagnostic check can be made . Formally this would be done by referring

*Here and elsewhere other functional forms might be found more appropriate. These
— examples are intended only to illustrate essential principles; not, of course, to be

comprehensive. *
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some suitable funct ion q (y )  of the data to a refe rence dist r ib ut ion derived fer the

predictive distribution p(yIM
0
).

Robustification. If the discrepancy parameter is included then robust estirnation* of

0 is provided by the posterior distribution -

p (O!y) = I p ( O I ~ ,y) p ( ~ I y ) d ~ (6.1)

If we write

Pu(BI Y) p( 8~y)/p( 8) (6 .2 )

p($ Iy) = I p ( 8 I B . y ) P ~
( 6 l Y ) p ( B ) d 8  (6.3 )

In this last expression

(i) p ( 6)  can be chosen to represent approximately the probability

of occurrence of different  vaY . ues of B in the real world

(ii) the function P
~
(8IY) is a pseudo—likelihood which reflects

information about B supplied by the data

(iii) considered as a function of B, p( 0 B ,y )  reflects the sensitivity

of estimation to the choice of the discrepancy parameter.

The omission of the parameter B is equivalen-’ to setting it equal to the value

B0 which it takes in the ideal model N
0. Table 1 shows some examples of diagnostic

checks and corresponding robust estimation methods. A fuller discussion is given

elsewhere (Box 1979).

Discussion. There may be Bayesians who would deny the need for diagnostic checks based

on sampling theory. They may feel that “they can do it all with Bayes”. I do not

believe this position can be sustained because it implies either

(i)  that they know what the model is in advance or

(ii) that they are prepared to make the model so comprehensive that nothing

could possibly be overlooked. -

*Numerous authors (Huber , Tukey, Andrews , Hampel, e tc . )  have proposed ad hoc methods
of robust estimation relying on the empirical modification of classical estimation
procedures. It seems more logical to me to modify the model which is presumably at
fault rather than the method of estimation which is not. Furthermore this has the
advantage of clearly revealing the assumptions which are being made.
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Both positions are qrandjose and unrealistic and the second if attempted could lead

to unnecessarily complicated models which Would impede scientific progress.

In this connection it must be realized that looking at residuals is essentially a

sampling theory procedure and is an acknowledgement of the often happy fact that an

experiment might reveal more than was bargained for.  To put it another way, every

Bayesian statement is conditional and somewhere there has to be an anchor.

An acceptance of my theme implies of course that what is tentatively included in

— a model is a matter of judgement.11 However we can still look for guidelines for model

building on what to tentatively include (robustify for) and what to tentatively omit

(and later check f o r) .

Obviously the need for special features in the model c~epends on the context, e.g.:

(a) serial data (in particular most economic and business data) cannot reasonably be

expected to be represented by a model with uncorrelated errors, autocorrelation is

virtually certain (temporary changes in mean and variance are also very likely in

serial data), (b) data for which 
~
‘max ”~

’min is large is likely to need transformation

before any simple model could apply, (C) most experimental data are liable to occa—

sional bad values. Elaborations which are primary candidates for robustification

(inclusion in the model) reflect features which might easily elude diagnostic checks

and could then invalidate subsequent analysis.

Although the ad hoc robustifiers seem to have given all their attention-- to

possible non-normality of (assumed independent) observations, an even greater source

of serious trouble is autocorrelation in serial data. See for example Coen. Gomine and

Kendall ( 1968), Box and Newbold ( 1971), Pallesen (1977) ,  B x  and Jenkins ( 1970) .

Th is idea that a s tat is t ic ian has to use scientific j udqement is no4’ a universally
popular one. The objectivity of statistics like that of science c a not of course
mean that all statisticians (or scientists) even though capable of ‘ sing the same set
of tools will do equally well when using them. Just as there are good lawyers and bad
lawyers , there arc iood statisticians and poor ones.

—23—

~~~~~~~~~~ - -



~~
--

~~
-
~~~--~~~

- —
~~~~~-~~~~~~-- --‘.~~~~ -

APPENDIX

Another Example: 0 known, ~2 unknown

Suppose now we have a known mean 0 but unknown variance ~
2 Also suppose we

express uncertainty about the variance by assuming a priori that ~
2 is distributed

about s~ in a scaled 
,—2 distribution having V

0 
degrees of freedom. This is

equivalent to assuming that a supposedly relevant estimate s~ of ~
2 having v0

degrees of freedom is available from past data and has been assessed against a non-

informative reference prior (i.e. prior to the first sample the distribution of log a

was flat in the neighborhood of the likelihood). Then for a prospective sample of

n = V + 1 observations

n 1 2  — 2
2 2  ~~~~~ + n (y - 0)

P ( y I a ~M) ct (o ) exp 
~
2 

(A.l)

P(0
2
1M)5(0

2) {2 
+ l 1 2 ~~~~~~

[

~~~
v

os
~~ (A . 2)

The complete prospective statement about the model is thus

.2 - 

p(y,
2
IM)a(s~)

2 (2J 2 + 
exp ~~ ~

2
] (A.3)

where a = (n(y — 0) + vs + v0s0)/(n 
+ v

0).

When actual data 
~d 

becomes available then conditional on the acceptance of this

model inferences about must be made f rom the posterior distribution
n+v

p( a 2 ly d,M ) cz ( a2J 2 + i] (&~) { 2 exp [_4~~~~~ø ~~~~~ 
(A .4)

However rational acceptance of the relevance of this model for the situation in which

Yd is generated requires that relevant aspects of are not surprising when assessed

against a reference distribution derived from the predictive distribution.

V
0

2 2
(S )

p (y~M)~ 
0 (A .5)

0

(a 2 ) 2
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pertinent features of the sample are = Ey/n, s~ = 1 (y — y)
2/) and furi :tCori of

(n — 2) residual quantities U
1

8 U
2

8 . . . ,U~~~ 2 
defined as before. i 4 - ~ fl1u’~~ :~~~~~ r - ~~~’r -~

against their relevant reference distributions derived from p (y~M). The Jacobi n o~

the transformation from y to ~~s
2

u is proportional to

V 2—— 1 n—2 ~( 2 ) 2 i~ +
j =l~~ ~ J

Thus

p (y,s
2
,u~M) = p(y~52,M)p (q?~M)p (u~M) (A .6 )

and

— V + l

p(~ I s 2 ,M )a ~~~{i + ~~~~ 
~~~~~ 

2 
where = (Vs

2 + v
0
s~ )l (V + v 0

) (A. 7)

p p  and v = ( v + v )
p 0

v
2 2

2~ 1 Fp(s )M )a  j ’ where F =

S
0

(1
V
0

n—2 ~ u2

p (U I M ) c i  if + ‘~~~

j=l

Unusual features of ~~~~ and u
1
,. ..,u

2 
would thus be assessed by computing

(i) Pr {p(s2
~M) < p(s~IM) )

(ii)  Pr {p (y l s
2 ,M ) < P ( Y

~~
S
~~

,M ) }

(iii) Pr{p (g.IM) < p(g~~ M))

These are two tailed probabilities associated with reference of

~~ 
~~~~ to an F distribution with V and v0 degrees of freedom
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(ii) ‘~~(y - ~)/s to a t table.

Ci i i )  g .  to the reference distribution obtained by appropriate integration

of p (u ) .

Inferences about the variance

(a) Suppose v
0 

-
~ 0.

This limit corresponds to usual noninformative Jet fereys’ prior . Again the values

of V
0 

that could represent real situations could approach zero but not reach it.

Since in practice there could always be values of s2 which would be surprising even

though p(o 2 IM ) was disperse , this would correspond to the situation where a very small

value of ) was found even though v
0 was very small.

0

(b) Suppose V
0 

is very large

2 2 2 2Then and s = (vs + v
0
s
0
)/(v + v

0
) are very precisely known and if we

believe the model the posterior distribution p(02Jy,M), is sharply concentrated about

s~ and our belief a posteriori is the same as that a priori. However for p (ylM) we

obtain
— 0 IM) = p (z  = 

~
‘ (A.10)

where z is a unit normal deviate and

2 2

- ~(!. IM) = 

2 

(A.l1)

So that it is only after applying the checks c(y) and c(s ) as well as c~(u) that

we could logically use Bayes theorem.
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